Modelling and Analysis of the Pluriel Roof System

A dynamic Multi-Body Approach

SayField International & Inalfa Roof Systems

2001

Project Approach

- Customized ADAMS simulation environment to automate and support:
 - Different types of analyses: kinematic, static dynamic
 - Different model complexities:
 - Rigid<-> Flexible
 - Pin contact method
 - Creating of new parameter settings:
 - Slot geometry creation through kinematics,
 - Automated geometry changes of model components,
 -

Contents

- Model layout & method explanation
- Verification of the pin-slot model method
- Verification of the flexible model
- Used simulation approach:
 - Focus on opening-closing hand force required
 - > Test criteria:
 - 1. Hand force magnitude
 - 2. Locking effect at full pre-lift cassette
 - Verification of the measurements
- Results of parameter studies performed

Simulation Model Layout

Modeling Method

- Geometry based on Inalfa IGES files
- Arm Force through prescribed lever rotation
- Open-close sequence in 10 seconds
- Friction is included at pins, plates and joints
- Half system is modelled, symmetry L-R
- Top Pivot can be one-sided x and free z
- Gas spring forces according to specified linear approach
- All force load effects can be switched off:
 - Contributions of components is clear
 - Possible to analyse self-locking effect

IRS Customised - ADAMS

Pin-Slot Model, I

- Activating pins has large effect on locking phenomenon (Cz = 0, Cx = 0)
- Activating pins has small effect on hand force required (Cx = Cz = 1)
- Friction coefficient pin-plate has large effect on locking effect

Pin Slot Model, II

- Play in pins has effect on self-locking and hand force.
- More play is beneficial for both criteria (0.1 mm = O.K.)
- Large pin axial stiffness increases torsion stiffness of Lower Arm → bigger handforce required

\rightarrow More Pin Play: less hand force required

Force hand evaluation. Reference Model, Stiffness Top X=Z = 1e8 Nim, C_Fins = 1e8 Nim (10 X Looset) Sector 1. 311 \$1 **FORODENIZA** -31 -----Tited 7 138.8 198.1 E.L. 10 21 30. 40 13 70 EC 90. 100. 11

Nav. Pir Deformation, Ref. Model Top C = 1e6 Nitr C_Pris = 1e8 Nitr (10 X Higher) diment. 4.06-012 106-017 Pault ---- Trol, 2 ----- Trol, 2 --- Ind.4 -Trial S Condition 106-00 ===Triol 6 106-015 100 DI. 21 M. 6.0 Time (sec)a Εš 50 10 0.0 10 +1. 10 36

→ Less Pin Play: more hand force required

Verification of Flex Model

- Steady state stiffness of Flex part determined.
- Method: three rigid linings along slots
- Extra influences in Flex model:
 - Torsion Stiffness of upper Frame
 - Long. and Torsion. Stiffness of the Plate
- → Hand force increases with reasonable parameters

Static Analysis to determine Flex Part lateral stiffness

Torsion stiffness effect analysis

Hand Force Versus Cassette Angle, Effect of Flexibility and Plate Friction

Parameter Study Effects on locking & hand force

- Hand pushing angle: -30d +30d,
- Angle of Pre-Lift about top: -20d +20d,
- Centre Pin z-position lower: 0 50 mm,
- Angle Lower arm: 10 d 20 d,

Inner Pin: reference vs. 50 mm lower

Note the decrease in Hand Force and Upper Joint

Lower Arm Angle: 10d vs 20d

Note the decreased locking effect

